Skip to main content

ULTRASONIC TEST

ULTRASONIC TEST

INTRODUCTION
This method is used to test a variety of both metallic & non metallic products such as welds, forgings, castings, sheets, etc. It has an advantage of detecting sub-surface discontinues with accesses to only one side of the specimen.
In this method beams of high frequency sound waves are introduced into the material being tested. The sound waves travel through the material with some loss of energy & are reflected back . This is detected & analysed to detect the presence of flaws.
This test employs ultrasonic waves. These waves are mechanical waves that consist of oscillations or vibrations.

METHOD

TRANSMISSION SYSTEM
This method employs two Transducers, one for sending & other for receiving the pulses. These
may be short or continuous & are transmitted through the material. The result gets displayed on the CRO connected. The settings of the CRO can be adjusted with respect to time & distance.
Prior to testing couplant is used to provide a suitable sound path between the transducer & the test surface. It excludes the air between the surfaces & aids the movement of the waves. Oil or water used with glycerin is the commonly used couplant.
ULTRASONIC TEST

ADVANTAGES
  • Testing can be carried out with one side access.
  • Any thickness on higher side can be tested ( Superior penetrating power ).
  • Results are immediate.
  • Exact depth and locations of flaws can be estimated.
  • Compact and portable equipment's are available.
LIMITATIONS
  • Highly skilled and trained personnel are required. Coarse grain weld material like Austenitic stainless steel & Nickel based non ferrous welds are difficult to test.
  • Equipment cost is very high for automated testing with recording I imaging facility.

APPLICATIONS
  • Inspection of large castings & forgings, for internal soundness before carrying out expensive machining operations.
  • Inspection of moving strip or plate as regards its thickness.
  • Inspection of locomotive axles & wheel pins for fatigue cracks
  • Inspection of rails for holes without dismantling the assemblies.

Popular posts from this blog

CHARPY V NOTCH IMPACT TEST

CHARPY V NOTCH IMPACT TEST Object : To determine the amount of energy absorbed in fracturing a standardized test piece at a specified temperature. Method : A machined, notched specimen is broken by one blow from a pendulum. Because scatter occurs in the results, at least three specimens are used to assess the joint represented. Testing is carried out at a temperature specified in the appropriate application standard. Reporting Results: Location and orientation of the notch.  Testing temperature. Energy absorbed in joules.  Description of fracture appearance. Location of any defects. The Charpy impact test, measured in joules, is an assessment of TOUGHNESS. Transition temperature (curve) in steel.

MACRO SECTION

MACRO SECTION Object: To examine a cross section of a weld for internal defects and soundness. Method:  A transverse section of the weld is cut out. The cross section is then visually inspected. The section is filed down from rough to smooth, then emery or wet/dry papered down to a surface finish of 600 grit. The surface is then etched in NITAL (5% - 10% nitric acid in alcohol), washed off, rinsed and dried. (Possibly a final clean with acetone and mount in Bakelite) The specimen is then inspected at up to 10-x magnification. Reporting Results: Material. Welding process. Specimen identification. Sentencing standard. Thickness. Geometric flaws - type, size and location. Internal flaws - type, size and location. Parent metal flaws - type, size and location. Accept or reject, to standard, for each flaw.    Comparison of macro section and micro section:                             ...

Chemical compositions of steel

Chemical Composition :-  The chemical composition of steel is of great importance since it determines the potential mechanical properties of the finished steel product and controls the degree of corrosion resistance and weld- ability of the material For this reason structural steel specifications always provide a table of chemical composition limits within which the steel producer must develop his own particular recipe. The purpose of the specified chemical composition is not to provide the detailed chemical formula necessary to produce a certain type of steel but to provide safeguards. The steel producer is informed that he must keep within the limits which are deemed to be acceptable for the type of steel considered. Within these limits, which may be broad or narrow, the steel producer has complete freedom to use his skill and knowledge to make steel with the required mechanical properties. Each producer selects a combination of quantities of elements, which fall within the r...