Skip to main content

Rockwell Hardness Test

Rockwell Hardness Test

The Rockwell hardness test method consists of indenting the test material with a diamond cone or hardened steel ball indenter. The indenter is forced into the test material under a preliminary minor load FO usually I 0 kgf. When equilibrium has been reached, an indicating device, which follows the movements of the indenter and so responds to changes in depth of penetration of the indenter is set to a datum position. While the preliminary minor load is still applied an additional major load is applied with resulting increase in penetration . When equilibrium has again been reach, the additional major load is removed but the preliminary minor load is still maintained. Removal of the additional major load allows a partial recovery, so reducing the depth of penetration. The permanent increase in depth of penetration, resulting from the application and removal of the additional major load is used to calculate the Rockwell hardness number.

                                                                      H R = E - e

FO = preliminary minor load in kgf

F1 = additional major load in kgf

F = total load in kgf

e = permanent increase in depth of penetration due to major load Fl measured in units of 0.002 mm

E = a constant depending on form of indenter: I 00 units for diamond indenter, 130 units for steel

ball indenter

HR = Rockwell hardness number

D = diameter of steel ball

ROCKWELL HARDNESS TEST


Popular posts from this blog

The Brinell Hardness Test

The Brinell Hardness Test The Brinell hardness test method consists of indenting the test material with a 10 mm diameter hardened steel or carbide ball subjected to a load of 3000 kg. For softer materials the load can be reduced to 1500 kg or 500 kg to avoid excessive indentation. The full load is normally applied for 10 to 15 seconds in the case of iron and steel and for at least 30 seconds in the case of other metals. The diameter of the indentation left in the test material is measured with a low powered microscope. The Brinell harness number is calculated by dividing the load applied by the surface area of the indentation. The diameter of the impression is the average of two readings at right angles and the use of a Brinell hardness number table can simplify the determination of the Brinell hardness. A well structured Brinell hardness number reveals the test conditions, and looks like this, "75 HB 10/500/30" which means that a Brinell Hardness of 75 was obtained us

Part -2 Most commonly asked Mechanical Interview Questions

Most commonly asked Mechanical Interview Questions 1. What is the difference between Critical Speed and Whirling Speed? Ans. In Solid mechanics, in the field of rotor dynamics, the critical speed is the theoretical angular velocity which excites the natural frequency of a rotating object, such as a shaft, propeller or gear. As the speed of rotation approaches the objects natural frequency, the object begins to resonate which dramatically increases system vibration. The resulting resonance occurs regardless of orientation.Whirling Speed is due to the unbalanced forces acting on a rotating shaft. 2. How a Diesel Engine Works as Generator? Ans. Diesel engine is a prime mover, for a generator, pump,and for vehicles etc. generator is connected to engine by shaft. mostly in thermal power plat ,there is an engine is used to drive generator to generate power. 3. Explain Second Law of Thermodynamics? Ans. The entropy of the universe increases over tim

ULTRASONIC TEST

ULTRASONIC TEST INTRODUCTION This method is used to test a variety of both metallic & non metallic products such as welds, forgings, castings, sheets, etc. It has an advantage of detecting sub-surface discontinues with accesses to only one side of the specimen. In this method beams of high frequency sound waves are introduced into the material being tested. The sound waves travel through the material with some loss of energy & are reflected back . This is detected & analysed to detect the presence of flaws. This test employs ultrasonic waves. These waves are mechanical waves that consist of oscillations or vibrations. METHOD TRANSMISSION SYSTEM This method employs two Transducers, one for sending & other for receiving the pulses. These may be short or continuous & are transmitted through the material. The result gets displayed on the CRO connected. The settings of the CRO can be adjusted with respect to time & distance. Prior to testing couplant is used to prov