Skip to main content

The Brinell Hardness Test

The Brinell Hardness Test

The Brinell hardness test method consists of indenting the test material with a 10 mm diameter
hardened steel or carbide ball subjected to a load of 3000 kg. For softer materials the load can be reduced to 1500 kg or 500 kg to avoid excessive indentation. The full load is normally applied for 10 to 15 seconds in the case of iron and steel and for at least 30 seconds in the case of other metals. The diameter of the indentation left in the test material is measured with a low powered microscope. The Brinell harness number is calculated by dividing the load applied by the surface area of the indentation.

The Brinell Hardness Test


The diameter of the impression is the average of two readings at right angles and the use of a Brinell hardness number table can simplify the determination of the Brinell hardness. A well structured Brinell hardness number reveals the test conditions, and looks like this, "75 HB 10/500/30" which means that a Brinell Hardness of 75 was obtained using a 1Omm diameter hardened steel with a 500 kilogram load applied for a period of 30 seconds. On tests of extremely hard metals a tungsten carbide ball is substituted for the steel ball. Compared to the other hardness test methods, the Brinell ball makes the deepest and widest indentation, so the test averages the hardness over a wider amount of material, which will more accurately account for multiple grain structures and any irregularities in the uniformity of the material. This method is the best for achieving the bulk or macro-hardness of a material, particularly those materials with heterogeneous structures.

Popular posts from this blog

BEND TESTS

BEND TESTS Object:   To determine the soundness of weld metal, heat affected zone and weld zone.These tests may also be used to give some measure of the ductility of the weld zone. It is not usual to use transverse and longitudinal bend tests for the same application. Method:   All specimens to be removed and prepared without causing significant distortion or heating. The cap and root are ground flush. The specimen is bent by the movement of a former of prescribed diameter, the relevant side of the specimen to be placed in tension. Angle of bend and diameter of former should be as specified in the appropriate standard. Reporting Results: Thickness of specimen Direction of bend (root or face) Angle of bend Diameter of former Appearance of joint after bending e.g. type and location of flaws

DESTRUCTIVE TESTING

DESTRUCTIVE TESTING Destructive tests on raw materials, welded joints are usually made as part of the approval of material/ welding procedure or a welder. Commonly used destructive tests are: Hardness  Bend  Tensile Charpy Fracture tests Macro section TYPES OF TEST Quantitative (For measuring a 'quantity')  Tensile Charpy Hardness C.T.O.T. (crack tip opening test) Qualitative (For assessing joint 'quality') Bend test Nick break  Macro Fillet fracture The test pieces are cut from the test weld and their location is often specified in the standard. The areas for test are shown below.