Skip to main content

HARDNESS TEST

HARDNESS TEST

Hardness is the property of a material that enables it to resist plastic deformation, usually by penetration. However, the term hardness may also refer to resistance to bending, scratching, abrasion or cutting.

Measurement of Hardness:
Hardness is not an intrinsic material property dictated by precise definitions in terms of fundamental units of mass, length and time. A hardness property value is the result of a defined measurement procedure.
Hardness of materials has probably long been assessed by resistance to scratching or cutting. An example would be material B scratches material C, but not material A. Alternatively, material A scratches material B slightly and scratches material C heavily. Relative hardness of minerals can be assessed by reference to the Mohs Scale that ranks the ability of materials to resist scratching by another material. Similar methods of relative hardness assessment are still commonly used today. An example is the file test where a file tempered to a desired hardness is rubbed on the test material surface. If the file slides without biting or marking the surface, the test material would be considered harder than the file. If the file bites or marks the surface, the test material would be considered softer than the file.
MOHS HARDNESS SCALE

The above relative hardness tests are limited in practical use and do not provide accurate numeric data or scales particularly for modem day metals and materials. The usual method to achieve a hardness value is to measure the depth or area of an indentation left by an indenter of a specific shape, with a specific force applied for a specific time. There are three principal standard test methods for expressing the relationship between hardness and the size of the impression, these being Brinell, Vickers, and Rockwell. For practical and calibration reasons, each of these methods is divided into a range of scales, defined by a combination of applied load and indenter geometry.

Hardness Testing Methods: 
  •               Rockwell Hardness Test 
  •              Brinell Hardness Test
  •              Vickers Hardness Test

Popular posts from this blog

MACRO SECTION

MACRO SECTION Object: To examine a cross section of a weld for internal defects and soundness. Method:  A transverse section of the weld is cut out. The cross section is then visually inspected. The section is filed down from rough to smooth, then emery or wet/dry papered down to a surface finish of 600 grit. The surface is then etched in NITAL (5% - 10% nitric acid in alcohol), washed off, rinsed and dried. (Possibly a final clean with acetone and mount in Bakelite) The specimen is then inspected at up to 10-x magnification. Reporting Results: Material. Welding process. Specimen identification. Sentencing standard. Thickness. Geometric flaws - type, size and location. Internal flaws - type, size and location. Parent metal flaws - type, size and location. Accept or reject, to standard, for each flaw.    Comparison of macro section and micro section:                             ...

'NICK' BREAK (BEND) TEST

'NICK' BREAK (BEND) TEST Object :  As for fillet weld fracture, used on butt welds. Method: The specimen is cut transversely to the weld, and a saw cut is applied along the center of the weld face. The best place for the cut is at a start I stop. The specimen is fractured by bending or by hammer blows. The nick bend test will find internal defects. Reporting Results: Thickness of material.  Width of specimen.  Location of fracture.  Appearance of joint after fracture.

CHARPY V NOTCH IMPACT TEST

CHARPY V NOTCH IMPACT TEST Object : To determine the amount of energy absorbed in fracturing a standardized test piece at a specified temperature. Method : A machined, notched specimen is broken by one blow from a pendulum. Because scatter occurs in the results, at least three specimens are used to assess the joint represented. Testing is carried out at a temperature specified in the appropriate application standard. Reporting Results: Location and orientation of the notch.  Testing temperature. Energy absorbed in joules.  Description of fracture appearance. Location of any defects. The Charpy impact test, measured in joules, is an assessment of TOUGHNESS. Transition temperature (curve) in steel.