Skip to main content

What is Annealing ?

Annealing:-


Annealing Process :-


Annealing is a heat treatment process by which the properties of steel are enhanced to meet machinability requirements.In this process Hypoeutectoid steels (less than 0.83% carbon) are heated above upper critical temp., soaked and cooled slowly and Hypereutecoid (above 0.83%) are heated above lower critical temp., soaked and allowed to cool slowly.


Annealing Process Steps:




1.Heat material into the asutenite region (i.e. above 1600F) – rule of thumb: hold 

 steel for one hour for each one inch of thickness

2.Slowly furnace cool the steel – DO NOT QUENCH

3.Key slow cooling allows the C to precipitate out so resulting structure is coarse 
pearlite with excess ferrite
4.After annealing steel is quite soft and ductile



The purpose of Annealing is :



1)Reduce hardness and brittleness

2)Alter microstructure for desired mechanical properties

3)Soften steels to improve formability

4)Recrystalize cold worked (strain hardened) steel
5)Remove internal stresses induced by some previous processes such as forming, forging, uneven cooling.

Types of Annealing :-

Full Annealing:-



•Heating 25-50°C above upper critical temp. for steel <0.9% C.



• Heating 50°C above lower critical temp. for higher carbon steel.



• Soaking for sufficient time & controlled slow cooling

Process Annealing:- Also called Sub-Critical annealing 


•Heating at 500-650°C.

• Soaking for sufficient time & controlled slow cooling


Stress Relief Annealing:-


•Heat treat between 550 and 650°C-low carbon steel



•Soaking time – One hour per inch of thickness.



•Cooled down slowly in the furnace or in air. A slow cooling speed is important to avoid 


tensions caused by temperature differences in the material, this is especially important 

when stress relieving larger components


Spherodise Annealing:- This can be done by two methods 

  •  Heating and cooling the material alternatively between temperatures just above and below the lower critical temperature.
  • Steel is heated just below the lower critical temperature about 700 Degree centigrade and the temperature is maintained for about 8 hours and allowed to cool down slowly.

Isothermal Annealing:-
  • Steel is heated above the upper critical temperature
  • Forced cooling is done
  • Cooling is done below the lower critical temperature about 600 to 700 Degree Centigrade

Popular posts from this blog

Part -7 Most commonly asked Mechanical Interview Questions

Most commonly asked Mechanical Interview Questions What are the different types of fits? Explain? On the basis of Indian standards fits can mainly be categorised into three groups: > Clearance Fit : These types of fits are characterised by the occurrence of a clearance between the two mating parts. The difference between the minimum size of the hole and the maximum size of the shaft is called the minimum clearance, the difference between the maximum size of the hole and the minimum size of the shaft is known as maximum clearance. > Interference Fit : In these types of fits the size of the mating parts are predefined so that interference between them always occurs. The tolerance zone of the hole is completely below the tolerance zone of the shaft. > Transition Fit : As the name suggests these type of fit has its mating parts sized limited to allow either clearance or interference. The tolerance zone of the hole and the shaft overlaps in case of such fits. For a shaf

CHARPY V NOTCH IMPACT TEST

CHARPY V NOTCH IMPACT TEST Object : To determine the amount of energy absorbed in fracturing a standardized test piece at a specified temperature. Method : A machined, notched specimen is broken by one blow from a pendulum. Because scatter occurs in the results, at least three specimens are used to assess the joint represented. Testing is carried out at a temperature specified in the appropriate application standard. Reporting Results: Location and orientation of the notch.  Testing temperature. Energy absorbed in joules.  Description of fracture appearance. Location of any defects. The Charpy impact test, measured in joules, is an assessment of TOUGHNESS. Transition temperature (curve) in steel.

Rockwell Hardness Test

Rockwell Hardness Test The Rockwell hardness test method consists of indenting the test material with a diamond cone or hardened steel ball indenter. The indenter is forced into the test material under a preliminary minor load FO usually I 0 kgf. When equilibrium has been reached, an indicating device, which follows the movements of the indenter and so responds to changes in depth of penetration of the indenter is set to a datum position. While the preliminary minor load is still applied an additional major load is applied with resulting increase in penetration . When equilibrium has again been reach, the additional major load is removed but the preliminary minor load is still maintained. Removal of the additional major load allows a partial recovery, so reducing the depth of penetration. The permanent increase in depth of penetration, resulting from the application and removal of the additional major load is used to calculate the Rockwell hardness number.