Skip to main content

What is Annealing ?

Annealing:-


Annealing Process :-


Annealing is a heat treatment process by which the properties of steel are enhanced to meet machinability requirements.In this process Hypoeutectoid steels (less than 0.83% carbon) are heated above upper critical temp., soaked and cooled slowly and Hypereutecoid (above 0.83%) are heated above lower critical temp., soaked and allowed to cool slowly.


Annealing Process Steps:




1.Heat material into the asutenite region (i.e. above 1600F) – rule of thumb: hold 

 steel for one hour for each one inch of thickness

2.Slowly furnace cool the steel – DO NOT QUENCH

3.Key slow cooling allows the C to precipitate out so resulting structure is coarse 
pearlite with excess ferrite
4.After annealing steel is quite soft and ductile



The purpose of Annealing is :



1)Reduce hardness and brittleness

2)Alter microstructure for desired mechanical properties

3)Soften steels to improve formability

4)Recrystalize cold worked (strain hardened) steel
5)Remove internal stresses induced by some previous processes such as forming, forging, uneven cooling.

Types of Annealing :-

Full Annealing:-



•Heating 25-50°C above upper critical temp. for steel <0.9% C.



• Heating 50°C above lower critical temp. for higher carbon steel.



• Soaking for sufficient time & controlled slow cooling

Process Annealing:- Also called Sub-Critical annealing 


•Heating at 500-650°C.

• Soaking for sufficient time & controlled slow cooling


Stress Relief Annealing:-


•Heat treat between 550 and 650°C-low carbon steel



•Soaking time – One hour per inch of thickness.



•Cooled down slowly in the furnace or in air. A slow cooling speed is important to avoid 


tensions caused by temperature differences in the material, this is especially important 

when stress relieving larger components


Spherodise Annealing:- This can be done by two methods 

  •  Heating and cooling the material alternatively between temperatures just above and below the lower critical temperature.
  • Steel is heated just below the lower critical temperature about 700 Degree centigrade and the temperature is maintained for about 8 hours and allowed to cool down slowly.

Isothermal Annealing:-
  • Steel is heated above the upper critical temperature
  • Forced cooling is done
  • Cooling is done below the lower critical temperature about 600 to 700 Degree Centigrade

Popular posts from this blog

The Brinell Hardness Test

The Brinell Hardness Test The Brinell hardness test method consists of indenting the test material with a 10 mm diameter hardened steel or carbide ball subjected to a load of 3000 kg. For softer materials the load can be reduced to 1500 kg or 500 kg to avoid excessive indentation. The full load is normally applied for 10 to 15 seconds in the case of iron and steel and for at least 30 seconds in the case of other metals. The diameter of the indentation left in the test material is measured with a low powered microscope. The Brinell harness number is calculated by dividing the load applied by the surface area of the indentation. The diameter of the impression is the average of two readings at right angles and the use of a Brinell hardness number table can simplify the determination of the Brinell hardness. A well structured Brinell hardness number reveals the test conditions, and looks like this, "75 HB 10/500/30" which means that a Brinell Hardness of 75 was obtained us...

Rockwell Hardness Test

Rockwell Hardness Test The Rockwell hardness test method consists of indenting the test material with a diamond cone or hardened steel ball indenter. The indenter is forced into the test material under a preliminary minor load FO usually I 0 kgf. When equilibrium has been reached, an indicating device, which follows the movements of the indenter and so responds to changes in depth of penetration of the indenter is set to a datum position. While the preliminary minor load is still applied an additional major load is applied with resulting increase in penetration . When equilibrium has again been reach, the additional major load is removed but the preliminary minor load is still maintained. Removal of the additional major load allows a partial recovery, so reducing the depth of penetration. The permanent increase in depth of penetration, resulting from the application and removal of the additional major load is used to calculate the Rockwell hardness number.        ...

BEND TESTS

BEND TESTS Object:   To determine the soundness of weld metal, heat affected zone and weld zone.These tests may also be used to give some measure of the ductility of the weld zone. It is not usual to use transverse and longitudinal bend tests for the same application. Method:   All specimens to be removed and prepared without causing significant distortion or heating. The cap and root are ground flush. The specimen is bent by the movement of a former of prescribed diameter, the relevant side of the specimen to be placed in tension. Angle of bend and diameter of former should be as specified in the appropriate standard. Reporting Results: Thickness of specimen Direction of bend (root or face) Angle of bend Diameter of former Appearance of joint after bending e.g. type and location of flaws