Skip to main content

RADIOGRAPHY TEST

RADIOGRAPHY TEST

INTRODUCTION :Industrial radiography is a nondestructive test method that uses X-rays or Gamma rays to show the presence and certain characteristics of internal discontinuities in solid materials. The method is based on the ability of X-ray or Gamma-ray radiation to penetrate solids, to a degree that varies with such factors as wave length of the radiation, and type and thickness of the material part of the radiation penetrates the material and part is absorbed. The amount absorbed and the amount transmitted are a function of the thickness of the material.
Where a void or discontinuity exists, there is essentially less material to absorb the radiation. This creates a different in absorption, a difference that registers on photographic emulsions. The result is a shadow picture called a radiography

Radio-graphic Sources :
The common gamma ray radio-graphic sources :
  • Cobalt - 60
  • Cesium - 137
  • Iridium - 192
  • Thulium - 170
RADIOGRAPHY TESTING

Gamma Ray Radiography :Gamma rays are high energy electromagnetic waves of relatively short wavelength that are emitted during the radioactive decay of both naturally occurring and artificially produced unstable Isotopes. Many of the elements in the periodic table either have naturally occurring radioactive. However Radium and its salts become decompose at a constant rate giving out Gamma Rays which are of much shorter wavelength and more penetrating than x-rays.
The apparatus necessary for Gamma-Ray radiography is very simple. Cobalt-60 sources which are cylindrical with dimension of 3 x 3 to 6 mm and sealed in an appropriate container or capsule. Unlike x-rays, Gamma-Rays from its source are emitted in all directions. Therefore a no. of separate welded objects having cassette containing film fastened to the back of each object are disposed in a circle around the source placed in a central position. This way many welded objects can be radiographed simultaneously and overnight exposure may be taken without continuous supervision.

X-Ray Radiography Procedure:
X-ray produced in an X-ray tube where a (cathode) filament provides electrons which proceed towards the target (anode), strikes and suddenly stopped, a part of their kinetic energy is converted to energy of radiation or X-rays.
The portion of the casting where defects as suspected is exposed to X-rays emitted from the X-ray tube. A cassette containing X-ray film is placed behind and is in contact with metal, perpendicular to the rays.
Since most defects (such as blow holes, porosity, cracks, etc.) possess lesser density than the sound metal, they transmit X-rays better then the sound metal does; therefore the filmappears to be more dark where defects are in line of the X-ray.

Popular posts from this blog

The Brinell Hardness Test

The Brinell Hardness Test The Brinell hardness test method consists of indenting the test material with a 10 mm diameter hardened steel or carbide ball subjected to a load of 3000 kg. For softer materials the load can be reduced to 1500 kg or 500 kg to avoid excessive indentation. The full load is normally applied for 10 to 15 seconds in the case of iron and steel and for at least 30 seconds in the case of other metals. The diameter of the indentation left in the test material is measured with a low powered microscope. The Brinell harness number is calculated by dividing the load applied by the surface area of the indentation. The diameter of the impression is the average of two readings at right angles and the use of a Brinell hardness number table can simplify the determination of the Brinell hardness. A well structured Brinell hardness number reveals the test conditions, and looks like this, "75 HB 10/500/30" which means that a Brinell Hardness of 75 was obtained us...

NDT ( NON DESTRUCTIVE TESTING )

NDT (NON DESTRUCTIVE   TESTING) :-  Non Destructive Testing in great variety are in world   wide used to detect variations in structure, minute changes in surface finish, the presence of cracks or other physical discontinuities, measure   the thickness   of materials   and   coatings   and   to   determine  other characteristics of industrial products. REASON'S FOR THE USE OF NDT: "NDT" is used by the manufacturers for the following reasons:  1. To ensure product reliability. 2. To make profit for the user. a)    To ensure customer satisfaction b)   To aid in better product reliability. c)    To control the manufacturing processes. d)   To lower the manufacturing costs. e)    To maintain uniform quality level. SOME OF THE MOST COMMON NDT METHODS ARE : 1.VISUAL ...

Vickers Hardness Test

Vickers Hardness Test:- The Vickers hardness test method consists of indenting the test material with a diamond indenter, in the form of a right pyramid with a square base and an angle of 136 degrees between opposite faces subjected to a load of I to I 00 kgf. The full load is normally applied for I 0 to 15 seconds. The two diagonals of the indentation left in the surface of the material after removal of the load are measured using a microscope and their average calculated. The area of the sloping surface of the indentation is calculated. The Vickers hardness is the quotient obtained by dividing the kgf load by the square mm area of indentation. F= Load in kgf d = Arithmetic mean of the two diagonals, di and d2 in mm HV = Vickers hardness When the mean diagonal of the indentation has been determined the Vickers hardness may be calculated from the formula, but is more convenient to use conversion tables. The Vickers hardness should be reported like 800 HV/10, which means a Vickers...