Skip to main content

LIQUID (DYE) PENETRATION TEST (D.P.T.)

LIQUID (DYE) PENETRATION TEST

INTRODUCTION
A liquid penetrant test is non-destructive type of testing to detect flaws that are open to the surface. e.g. cracks, seams, laps, lack of bond, porosity, cold shuts etc. can be effectively used not only in the inspection of ferrous metals but is especially useful for non-ferrous metal products and on non-porous, non-metallic materials such as ceramics, plastics and glass.

PRINCIPLE OF OPERATION
The principle of liquid penetrant test is that the liquids used enter small openings such as cracks or porosities by capillary action. They are influenced by factors such as the condition of the surface of material and the interior of the discontinuity. For liquid to penetrate effectively, the surface of the material must be thoroughly cleaned of all material that would obstruct the entrance of the liquid into the defect. After cleaning, the liquid penetrant is applied evenly over the surface and allowed to remain long enough to permit penetration into the possible discontinuities. The liquid is then completely removed from the surface of the component and either a wet or dry developer is applied. The liquid that has penetrated the defect will then bleed out onto the surface and the developer will help delineate them. This will show the location and general nature and magnitude of any defect present.

PROCEDURE FOR LIQUID PENETRANT TESTING 
This procedure covers Liquid Penetrant Examination by solvent/water removable process using visible penetrant for detecting discontinuities that are open to the surface of weldment and materials of any shape or size required by drawings, specifications and codes.



1. REQUIREMENTS
  • Pre-cleaner 
  • Penetrant 
  • Cleaner 
  • Developer 
2. SURFACE PREPARATION

The surface to be inspected and adjacent areas within shall be free from dirt, grease, scale or any other extraneous matter that would obscure surface openings or interfere with the test.

3. PRE-TEST CLEANING
Thoroughly clean the test area with cleaner and then wipe to dry with cotton waste. Allow surface to dry by normal evaporation for two minutes. Take adequate care to ensure proper surface condition prior to application of the penetrant.

4. TEMPERATURE
During testing the material temperature shall be between 6deg.c. and 52deg.c.
5. APPLICATION OF THE PENETRANT
Apply liquid penetrant by spraying or brushing to cover adequately and allow a minimum dwell time of I 0 minutes.

6. REMOVAL OF EXCESS PENETRANT
Wipe penetrant applied area with cotton waste. Continue cleaning till all traces of visible penetrant is removed. Take care to avoid use of excess cleaner and deposition of any contaminating material, which may lead, to misinterpretation of the test results. Allow the surface to dry by normal evaporation for 2 to 3 minutes.

7. APPLICATION OF DEVELOPER
Apply developer by spraying to give a thin uniform coat & maintain a developing time of minimum 7 minutes to maximum 30 minutes.

8. INTERPRETATION AND EVALUATION OF INDICATION
  • Only indications with major dimensions greater than 2mm shall be considered. 
  • A linear indication is one having length greater than 3 times width 
  • A rounded is one circular or elliptical shape with length equal to or less than 3 times width. 
  • Any questionable or doubtful indications shall be re-examined to determine whether they are relevant or not.


Popular posts from this blog

The Brinell Hardness Test

The Brinell Hardness Test The Brinell hardness test method consists of indenting the test material with a 10 mm diameter hardened steel or carbide ball subjected to a load of 3000 kg. For softer materials the load can be reduced to 1500 kg or 500 kg to avoid excessive indentation. The full load is normally applied for 10 to 15 seconds in the case of iron and steel and for at least 30 seconds in the case of other metals. The diameter of the indentation left in the test material is measured with a low powered microscope. The Brinell harness number is calculated by dividing the load applied by the surface area of the indentation. The diameter of the impression is the average of two readings at right angles and the use of a Brinell hardness number table can simplify the determination of the Brinell hardness. A well structured Brinell hardness number reveals the test conditions, and looks like this, "75 HB 10/500/30" which means that a Brinell Hardness of 75 was obtained us...

FILLET WELD FRACTURE TEST

FILLET WELD FRACTURE TEST Object :  To break the joint through the weld to permit examination of the fracture surfaces for flaws and to check root penetration and fusion. Method: The specimen is cut to length and a saw cut, normally 2 mm deep, is made along the center of the weld face. The specimen is fractured by bending or hammer blows. Reporting Results: Thickness of parent material.  Throat thickness and leg length.  Location of fracture. Appearance of joint after fracture. Depth of penetration / lack of penetration or fusion.

MAGNETIC PARTICLE EXAMINATION (M.P.I.)

MAGNETIC PARTICLE EXAMINATION (M.P.I.) INTRODUCTION This method is used for detecting cracks and other discontinuities open to surface or sub surface in ferromagnetic materials. Fine magnetic particles are applied to the surface of a part which has been suitably magnetized. The particles are attracted to regions of magnetic non-uniformity associated with defects and discontinuities, thus producing indication which are observed visually. PRINCIPLE When a piece of metal is placed in a magnetic field and the lines of magnetic flux get intersected by a discontinuity such as a crack or slag inclusion in a casting, magnetic poles are induced on either side of the discontinuity. The discontinuity causes an abrupt change in the path of magnetic flux flowing through the casting normal to the discontinuity, resulting a local flux leakage field and interfering with the magnetic lines of force. This local flux disturbance can be detected by its affect upon magnetic particles that collect o...