Skip to main content

What is Normalizing ?

Normalizing :-

Normalizing is a heat treatment process used to refine the structure of the steel to improve machinability, tensile strength, structure of weld and to remove cold working strains etc. Normalizing is often used for ferrous alloys that have been austenitized and then cooled in open air. Normalizing not only produces pearlite, but also bainite and sometimes martensite, which gives harder and stronger steel, but with less ductility than full annealing.
The hardness obtained after normalizing depends on the steel dimension analysis and the cooling speed used. 


Objectives of Normalizing :- 

  • It produces a uniform structure
  • It improves tensile, impact & yield strength
  • It refines the internal structure to fine grains
  • It removes the internal stress formed during previous operations
  • It improves structures in welds
  • It produces a harder and stronger steel then full annealing 
  • It eliminates the carbide network at the grain boundaries of hypereutectoid steels 
Properties obtained in normalizing vary with section thickness, larger sections which cool very slowly, develop properties similar to those of a fully annealed steel.

Normalizing Process :- 

In this process steels is heated to a temperature 40 degree C and 50 degree C above its upper critical point. It is held at that temperature for a short period of time (above 15 minutes). It is cooled down to room temperature in still air. The austenite is transformed in to ferrite plus pearlite for hypereutectoid steels. In case of alloy steels the final structure will consist of sorbite plus ferrite.
Normalising is preferred where the main aim of heat-treatment is to improve the mechanical properties. when the main purpose is to attain better machinability, softening and greater removal of internal stresses, annealing process is preferred. 
Normalized steels are harder and stronger than annealed steels. In the normalized condition, steel is much tougher than in any other structural condition. Parts subjected to impact and those that require maximum toughness with resistance to external stress are usually normalized.

Popular posts from this blog

Part -2 Most commonly asked Mechanical Interview Questions

Most commonly asked Mechanical Interview Questions 1. What is the difference between Critical Speed and Whirling Speed? Ans. In Solid mechanics, in the field of rotor dynamics, the critical speed is the theoretical angular velocity which excites the natural frequency of a rotating object, such as a shaft, propeller or gear. As the speed of rotation approaches the objects natural frequency, the object begins to resonate which dramatically increases system vibration. The resulting resonance occurs regardless of orientation.Whirling Speed is due to the unbalanced forces acting on a rotating shaft. 2. How a Diesel Engine Works as Generator? Ans. Diesel engine is a prime mover, for a generator, pump,and for vehicles etc. generator is connected to engine by shaft. mostly in thermal power plat ,there is an engine is used to drive generator to generate power. 3. Explain Second Law of Thermodynamics? Ans. The entropy of the universe increases over tim...

VISUAL INSPECTION OF WELDING

VISUAL  INSPECTION OF WELDING INTRODUCTION Inspection starts with examination of the material prior to fabrication, scabs, seams, scale or other harmful surface conditions may be detected in visual inspection. The inspector should check the following : Weld preparation, dimensions and finish.  Clearance dimensions of backing strips.  Alignment and fit up to the pieces being welded.  Verification of cleanliness.  Visual Inspection During Welding Visual inspection checks details of the work while welding is in progress. Among the details to be checked are : Welding process.  Cleaning.  Preheat and inter pass temperature.  Joint preparation.  Filler metal.  Flux or shielding gas.  Chipping, grinding, or gouging.  Post heating temperature and time.  Visual Inspection After Welding Visual inspection is useful for finished-product verification of such items as : Profile irregularities of the weldment....

BEND TESTS

BEND TESTS Object:   To determine the soundness of weld metal, heat affected zone and weld zone.These tests may also be used to give some measure of the ductility of the weld zone. It is not usual to use transverse and longitudinal bend tests for the same application. Method:   All specimens to be removed and prepared without causing significant distortion or heating. The cap and root are ground flush. The specimen is bent by the movement of a former of prescribed diameter, the relevant side of the specimen to be placed in tension. Angle of bend and diameter of former should be as specified in the appropriate standard. Reporting Results: Thickness of specimen Direction of bend (root or face) Angle of bend Diameter of former Appearance of joint after bending e.g. type and location of flaws