Skip to main content

What is Normalizing ?

Normalizing :-

Normalizing is a heat treatment process used to refine the structure of the steel to improve machinability, tensile strength, structure of weld and to remove cold working strains etc. Normalizing is often used for ferrous alloys that have been austenitized and then cooled in open air. Normalizing not only produces pearlite, but also bainite and sometimes martensite, which gives harder and stronger steel, but with less ductility than full annealing.
The hardness obtained after normalizing depends on the steel dimension analysis and the cooling speed used. 


Objectives of Normalizing :- 

  • It produces a uniform structure
  • It improves tensile, impact & yield strength
  • It refines the internal structure to fine grains
  • It removes the internal stress formed during previous operations
  • It improves structures in welds
  • It produces a harder and stronger steel then full annealing 
  • It eliminates the carbide network at the grain boundaries of hypereutectoid steels 
Properties obtained in normalizing vary with section thickness, larger sections which cool very slowly, develop properties similar to those of a fully annealed steel.

Normalizing Process :- 

In this process steels is heated to a temperature 40 degree C and 50 degree C above its upper critical point. It is held at that temperature for a short period of time (above 15 minutes). It is cooled down to room temperature in still air. The austenite is transformed in to ferrite plus pearlite for hypereutectoid steels. In case of alloy steels the final structure will consist of sorbite plus ferrite.
Normalising is preferred where the main aim of heat-treatment is to improve the mechanical properties. when the main purpose is to attain better machinability, softening and greater removal of internal stresses, annealing process is preferred. 
Normalized steels are harder and stronger than annealed steels. In the normalized condition, steel is much tougher than in any other structural condition. Parts subjected to impact and those that require maximum toughness with resistance to external stress are usually normalized.

Popular posts from this blog

MAGNETIC PARTICLE EXAMINATION (M.P.I.)

MAGNETIC PARTICLE EXAMINATION (M.P.I.) INTRODUCTION This method is used for detecting cracks and other discontinuities open to surface or sub surface in ferromagnetic materials. Fine magnetic particles are applied to the surface of a part which has been suitably magnetized. The particles are attracted to regions of magnetic non-uniformity associated with defects and discontinuities, thus producing indication which are observed visually. PRINCIPLE When a piece of metal is placed in a magnetic field and the lines of magnetic flux get intersected by a discontinuity such as a crack or slag inclusion in a casting, magnetic poles are induced on either side of the discontinuity. The discontinuity causes an abrupt change in the path of magnetic flux flowing through the casting normal to the discontinuity, resulting a local flux leakage field and interfering with the magnetic lines of force. This local flux disturbance can be detected by its affect upon magnetic particles that collect o...

CHARPY V NOTCH IMPACT TEST

CHARPY V NOTCH IMPACT TEST Object : To determine the amount of energy absorbed in fracturing a standardized test piece at a specified temperature. Method : A machined, notched specimen is broken by one blow from a pendulum. Because scatter occurs in the results, at least three specimens are used to assess the joint represented. Testing is carried out at a temperature specified in the appropriate application standard. Reporting Results: Location and orientation of the notch.  Testing temperature. Energy absorbed in joules.  Description of fracture appearance. Location of any defects. The Charpy impact test, measured in joules, is an assessment of TOUGHNESS. Transition temperature (curve) in steel.

The Brinell Hardness Test

The Brinell Hardness Test The Brinell hardness test method consists of indenting the test material with a 10 mm diameter hardened steel or carbide ball subjected to a load of 3000 kg. For softer materials the load can be reduced to 1500 kg or 500 kg to avoid excessive indentation. The full load is normally applied for 10 to 15 seconds in the case of iron and steel and for at least 30 seconds in the case of other metals. The diameter of the indentation left in the test material is measured with a low powered microscope. The Brinell harness number is calculated by dividing the load applied by the surface area of the indentation. The diameter of the impression is the average of two readings at right angles and the use of a Brinell hardness number table can simplify the determination of the Brinell hardness. A well structured Brinell hardness number reveals the test conditions, and looks like this, "75 HB 10/500/30" which means that a Brinell Hardness of 75 was obtained us...