Skip to main content

Metallurgy of Iron

Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are called alloys. 

1.       Introduction
2.       Properties
3.       Occurrence
4.       Uses
5.       Metallurgy


1.       Introduction
   Iron or ferrum (latin word)
   Elemental symbol: Fe
   Atomic number:     26
   Elemental group:   Transition element
            Uses: 
            prehistoric ages: ornamental purposes and used as weapons (IRON AGE)
   earliest specimen still extant is a group of oxidized iron beads found in Egypt, dates from about 4000 BC.

2.       Physical properties

·         Iron is soft, malleable, and ductile.
·         Iron is easily magnetized at ordinary temperatures; it is difficult to magnetize when heated, and at about 790° C (about 1450° F) the magnetic property disappears.
·         Pure iron melts at about 1535° C (about 2795° F), boils at 2750° C (4982° F), and has a specific gravity of 7.86.
·         The atomic weight of iron is 55.847.


3.       Chemical properties

·         It combines with the halogens (fluorine, chlorine, bromine, iodine, and astatine), sulfur, phosphorus, carbon, and silicon.
·         It displaces hydrogen from most dilute acids.
·         It burns in oxygen to form ferrosoferric oxide, Fe3O4 (magnetite).
·         Iron becomes corroded, forming a reddish-brown, flaky, hydrated ferric oxide (rust).
·         When iron is dipped into concentrated nitric acid, it forms a layer of oxide that renders it passive—that is, it does not react chemically with acids or other substances. The protective oxide layer is easily broken through by striking or jarring the metal, which then becomes active again.

4.       Occurrence

·         Metallic iron occurs in the free state in only a few localities, notably western Greenland. It is found in meteorites, usually alloyed with nickel.
·         In chemical compounds, it is widely distributed and ranks fourth in abundance among all the elements in the earth's crust; next to aluminum it is the most abundant of all metals.
·         The principal ore of iron is hematite, Fe2O3, which is mined in the United States in Minnesota, Michigan, and Wisconsin.
·         Other important ores:
   goethite - FeO(OH) Hydrated Iron Oxide
            magnetite
            siderite – FeCO3
            limonite - mixture of hydrated iron oxides
·         Pyrite, FeS2 (sulfide ore of iron)

·         Small amounts of iron occur in combination in natural waters, in plants, and as a constituent of blood.


5.             Uses of Iron

·         Iron is used in processed forms, such as wrought iron, cast iron, and steel.
·         Commercially pure iron is used for the production of galvanized sheet metal and of electromagnets.
·         Iron compounds are employed for medicinal purposes in the treatment of anemia.
·         Iron is also used in tonics.
·         Ferrous sulfate (FeSO4), green vitriol or copperas.
·         occurs as pale-green crystals containing seven molecules of water of hydration. It is obtained in large quantities as a by-product in pickling iron and is used as a mordant in dyeing, as a tonic medicine, and in the manufacture of ink and pigments.
·         Ferric oxide or hematite, an amorphous red powder, is obtained by treating ferric salts with a base or by oxidizing pyrite. It is used both as a pigment, known as either iron red or Venetian red; as a polishing abrasive, known as rouge; and as the magnetizable medium on magnetic tapes and disks.
·         Ferric chloride, obtained as dark-green, lustrous crystals by heating iron in chlorine, is used in medicine as an alcoholic solution called tincture of iron.
·         Ferric ferrocyanide (Fe4[Fe(CN)6]3), a dark-blue, amorphous solid formed by the reaction of potassium ferrocyanide with a ferric salt, is called Prussian blue. It is used as a pigment in paint and in laundry bluing to correct the yellowish tint left by the ferrous salts in water.
·         Potassium ferricyanide (K3Fe(CN)6), called red prussiate of potash, is obtained from ferrous ferricyanide (Fe3[Fe(CN)6] 2; also called Turnbull's blue), and is used in processing blueprint paper.


6.             Metallurgy of Iron

A.      Reduction of iron oxide in the Blast furnace.

B.       Materials:
1.       Concentrated iron ore
2.       Coke
3.       Blast of hot air
4.       Flux

C.       Reactions taking place in the Blast furnace
Combustion of Coke
                C(s)  +  O2(g)  ® CO2(g)  + heat
                CO2(g) +  C(s) ® 2CO(g)
 Reduction of Fe2O3
                      2Fe2O3(s)  + 3C(s)  ® 4Fe(l)  + 3CO2(g)
                Fe2O3(s)  + 3CO(g)  ® 4Fe(l)  + 3CO2(g)
 Calcination
                CaCO3(s)  + heat  ® CaO(s)  +  CO2(g)
 Slag formation
                CaO(s)  + SiO2(s)  ® CaSiO3(l)   (slag)
                CaO(s)  + Al2O3(s)  ® Ca(AlO2)2(l)

D.      Products of the Blast furnace
1.       Pig iron  - 93-95% Fe, 3-5% C, 1% Si, 0.1-0.3% P, <1% S
2.       Waste gases – CO2 and CO
3.       Slag – CaSiO3 and Ca(AlO2)2

E.       Principal products of Iron
1.       Cast iron
2.        Wrought iron
3.        Steel

7.             Steel Making

·         Bessemer Process
·          Open-Hearth Method
·          Basic Oxygen Process
·          Electric-furnace method



Popular posts from this blog

BEND TESTS

BEND TESTS Object:   To determine the soundness of weld metal, heat affected zone and weld zone.These tests may also be used to give some measure of the ductility of the weld zone. It is not usual to use transverse and longitudinal bend tests for the same application. Method:   All specimens to be removed and prepared without causing significant distortion or heating. The cap and root are ground flush. The specimen is bent by the movement of a former of prescribed diameter, the relevant side of the specimen to be placed in tension. Angle of bend and diameter of former should be as specified in the appropriate standard. Reporting Results: Thickness of specimen Direction of bend (root or face) Angle of bend Diameter of former Appearance of joint after bending e.g. type and location of flaws

CHARPY V NOTCH IMPACT TEST

CHARPY V NOTCH IMPACT TEST Object : To determine the amount of energy absorbed in fracturing a standardized test piece at a specified temperature. Method : A machined, notched specimen is broken by one blow from a pendulum. Because scatter occurs in the results, at least three specimens are used to assess the joint represented. Testing is carried out at a temperature specified in the appropriate application standard. Reporting Results: Location and orientation of the notch.  Testing temperature. Energy absorbed in joules.  Description of fracture appearance. Location of any defects. The Charpy impact test, measured in joules, is an assessment of TOUGHNESS. Transition temperature (curve) in steel.

Part -5 Most commonly asked Mechanical Interview Questions

Most commonly asked Mechanical Interview Questions with answer 1. Why the Centrifugal Pump is called High Discharge pump? Ans. Centrifugal pump is a kinetic device. The centrifugal pump uses the centrifugal force to push out the fluid. So the liquid entering the pump receives kinetic energy from the rotating impeller. The centrifugal action of the impeller accelerates the liquid to a high velocity, transferring mechanical (rotational) energy to the liquid. So it discharges the liquid in high rate. It is given in the following formulae: Centrifugal force F= (M*V2)/R. Where, M-Mass V-Velocity R-Radius 2. How Cavitation can be eliminated by Pump? Ans. Cavitation means bubbles are forming in the liquid. To avoid Cavitation, we have to increase the Pump size to One or Two Inch To increase the pressure of the Suction Head  Decrease the Pump Speed. 3. Why Cavitation will occur in Centrifugal Pump and not in Displacement Pump? Ans. The form...