Skip to main content

What is heat Treatment ?

HEAT TREATMENT

          It is a continuous process of HEATING, HOLDING AT A PARTICULAR TEMPERATURE FOR SPECIFIC TIME AND COOLING AT A PREDETERMINED RATE of metals to change their physical and mechanical properties, without letting it change its shape. . The most common application is metallurgical. Heat treatment could be said to be a method for strengthening materials but could also be used to alter some mechanical properties such as improving formability, machining, etc. It is very important manufacturing processes that can not only help manufacturing process but can also improve product, its performance, and its characteristics in many ways.

          Engineering properties are modified by heat treatment processes so that structural components are able withstand specified operating conditions and have desired useful life.

The properties of steel can be improved by changing its structure at atomic level. This can be achieved through

i)              By Alloying Elements

ii)             By Heat Treatment

a same type of steel can exhibit different type of properties under different heat treatment conditions. Such type of flexibility helps us to decide various manufacturing processes and ultimate uses of steel.


DETAILS OF HEAT TREATMENT

1.       Heating -> Rate of Heating
2.       Soaking -> Temp. & time of Soaking
3.       Cooling -> Rate & Medium of cooling

-               The properties of steel can be influenced by different combinations of the above parameters
-               Different composition and initial phases of material can also be influenced the properties after Heat Treatment.

PURPOSE OF HEAT TREATMENT

(1)     Soften the metal prior to shaping or cutting / Machining. 
(2)     Relieve the effects of strain hardening that occurs during cold forming.
(3)     Achieve the final strength and hardness required in the finished product as one of the end manufacturing processes.

TYPE OF HEAT TREATMENT

·         Body heat treatment
·         Surface heat treatment

TYPE OF THERMAL TREATMENT

  1. Annealing.
  2. Normalizing
  3. Hardening & Tempering.
  4. Stress Relieving
  5. Surface Hardening.




Popular posts from this blog

NDT ( NON DESTRUCTIVE TESTING )

NDT (NON DESTRUCTIVE   TESTING) :-  Non Destructive Testing in great variety are in world   wide used to detect variations in structure, minute changes in surface finish, the presence of cracks or other physical discontinuities, measure   the thickness   of materials   and   coatings   and   to   determine  other characteristics of industrial products. REASON'S FOR THE USE OF NDT: "NDT" is used by the manufacturers for the following reasons:  1. To ensure product reliability. 2. To make profit for the user. a)    To ensure customer satisfaction b)   To aid in better product reliability. c)    To control the manufacturing processes. d)   To lower the manufacturing costs. e)    To maintain uniform quality level. SOME OF THE MOST COMMON NDT METHODS ARE : 1.VISUAL ...

SIDE BEND TEST

SIDE BEND TEST Object: To determine the soundness of the weld metal and HAZ in a cross section. This may be preferred to the transverse bend test on thick materials. It is also used on processes or procedures expecting lack of fusion (e.g. thick plate using MIG). Method: The testing method is the same as that used for transverse bends except the cap and root are not ground flush, to allow testing across the complete weld. Report Results: Width and thickness of specimen.  Angle of bend. Diameter of former. Appearance of joint after bending e.g. type and location of flaws.

FILLET WELD FRACTURE TEST

FILLET WELD FRACTURE TEST Object :  To break the joint through the weld to permit examination of the fracture surfaces for flaws and to check root penetration and fusion. Method: The specimen is cut to length and a saw cut, normally 2 mm deep, is made along the center of the weld face. The specimen is fractured by bending or hammer blows. Reporting Results: Thickness of parent material.  Throat thickness and leg length.  Location of fracture. Appearance of joint after fracture. Depth of penetration / lack of penetration or fusion.